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Abstract
We use adaptive finite elements methods to investigate a variety of structures
in inverted nematic emulsions numerically. In particular, we study dipolar and
quadrupolar interactions between colloidal discs in two-dimensional nematics.
The behaviour of colloidal particles near a substrate and at a nematic–isotropic
interface are also considered.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of novel mechanisms of colloidal interactions [11] increases the range of
soft matter structures that may be used in applications. Inverted nematic emulsions (NE)
have been the subject of numerous studies in recent years. Although most of this work
considers three-dimensional systems, two-dimensional (2D) films have also been studied
theoretically [9, 10, 15] and experimentally [1]. Except for the linear regime, where analytical
solutions are known, the study of colloidal interactions in NE requires the use of sophisticated
numerical methods.

In this paper, we review some of our results on 2D NE. To set the notation we review
the elastic theories of Frank and Landau–de Gennes (LdG) in section 2. In general, the non-
linearities present in the theories prevent analytical solutions. We developed a numerical
scheme, based on finite elements methods, to minimize an arbitrary functional and have used
it [9] to study the dipolar interaction between two colloidal discs (see section 4). It was shown
that the energy of the quadrupolar configuration for a single disc is always lower than that
of the dipolar configuration in 2D [15] and that the interaction of two colloidal discs exhibits
interesting non-linear effects (see section 6). More recently we studied the behaviour of a
colloidal disc near a planar substrate (section 7) and close to a nematic–isotropic (NI) interface
(section 8).
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2. Elastic free energy

In the nematic phase the molecules exhibit a local average orientation n(r), referred to as the
director field. n is unitary and r = (x, y, z) in 3D. Considering small variations of n the
free-energy density can be expanded up to second order in ∇i n j . The free energy is invariant
under uniform rotations of the whole system and under the symmetry operations n → −n and
r → −r. The elastic free energy of the nematic phase can then be written as the sum of the
contributions due to three types of distortions: splay, twist and bend, and we obtain the Frank
free energy [5]:

Fn = 1
2

∫
�

d3r {Ksplay(∇ · n)2 + Ktwist[n · (∇ × n)]2 + Kbend[n × (∇ × n)]2}. (1)

� is the volume of the three-dimensional sample. When the nematic is confined to 2D the
second term is zero and there are splay and bend distortions only. We can write the director
as a function of the tilt angle θ(r), n(r) = (cos θ(r), sin θ(r)), and using the one constant
approximation, Ksplay = Kbend = K , equation (1) becomes

Fn = K

2

∫
�

d2r [(∇ · n)2 + (∇ × n)2] (2)

= K

2

∫
�

d2r (∇θ)2. (3)

� is the area of the two-dimensional film. Note that equation (3) is similar to the elastic free
energy of the two-dimensional XY model [10]. The director field is singular in the presence
of topological defects and thus the Frank free energy is defined only outside of the defect core.

Within this formalism it is possible to define a surface free energy, usually of the Rapini–
Papoular form, to take into account the interaction of the nematic with a surface [14]:

Fn,surface =
∫

∂�

dr
W

2
[1 − (n · ν)2]. (4)

ν denotes the preferred orientation of the nematic at the surface while W is the coupling
constant. For a colloidal particle of radius a, the ratio aW/K determines the existence of
topological defects.

Divergences may be avoided if one describes the system by a Landau free-energy density
fQ, which is a function of the temperature, volume, the local tensor order parameter, and its
spatial derivatives [17]:

fQ = − A(T )

2
Tr{Q2} +

B

3
Tr{Q3} +

C

4
Tr{Q2}2 +

L1

2
∂γ Qαβ∂γ Qβα +

L2

2
∂β Qαβ∂γ Qγα. (5)

Here summation over repeated indices is implied and Tr denotes the trace operation. The
first three terms describe the bulk free energy while the last two describe elastic distortions.
For a uniaxial nematic one can construct a traceless tensor order parameter [2] which we
write as Qαβ(r) = S(r)(nα(r)nβ(r) − δαβ/D), where D is the dimension of the sample
and S(r) � 1 is the scalar order parameter, that vanishes in the isotropic phase. Close
to the nematic–isotropic transition A(T ) is a linear function of the temperature, and B
and C are constants [8]. Inserting Qαβ in (5), integrating over the whole sample, and
comparing with equation (1) reveals that the Frank free energy is minimised in the limit
of constant order parameter S(r) = Sbulk. One also finds that L1 = Ktwist/(2S2

bulk) and
L2 = (Ksplay − Ktwist)/(2S2

bulk) = (Kbend − Ktwist)/(2S2
bulk) [17].

For a 2D system Tr{Q3} vanishes. If we consider the one-constant approximation then
L2 = 0 and L1 = K/2S2

bulk, and the LdG free energy becomes

FQ =
∫

�

(
− A(T )

2
Tr{Q2} +

C

4
Tr{Q2}2 +

L1

2
∂γ Qαβ∂γ Qβα

)
. (6)
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Stability requires that the total free energy is bounded from below; consequently, C is
positive. The equilibrium orientational order parameter is Sbulk = √

2A/C. The LdG free
energy may be written as a functional of the tilt angle θ(r) and the orientational order parameter
S(r). Within this approach one can estimate the core energy of a defect of charge q to be given
by [15]

Fcore = q2 π K

2
. (7)

Finally, let us consider the surface free energy within the LdG formalism. Taking ν

as the preferred orientation at the boundary ∂�, we can construct a tensor order parameter
Q0

αβ = S0(νανβ − δαβ/d) and expand the surface free energy around Q0:

FQ,surface =
∫

∂�

dr

[
W ′

2
Tr{(Q − Q0)2} + O(Tr{(Q − Q0)3})

]
. (8)

Up to second-order terms we obtain an expression that is effectively the same as (4) with
W = W ′S0. This free-energy contribution corresponds to the boundary conditions in the
strong anchoring regime.

3. Numerical minimization scheme

The director field follows from minimization of the total free energy with the constraint that
n is a unit vector, or that Qαβ is traceless. Even in the one-constant approximation and under
the assumption of strong anchoring, this is a difficult problem to solve due to the additional
constraint [14].

We have developed a numerical minimization scheme based on the finite elements method.
The 2D geometry is filled with triangles using a triangulation algorithm, respecting the
predefined physical boundaries. Standard numerical procedures [12] are used to minimize the
free energy with respect to any function, e.g. the tilt angle θ(r) or the tensor order parameter
Qαβ . This function is then known at the vertices of the mesh and is linearly interpolated within
each triangle.

Adapted meshes may be generated if the Hessian of the solution is known. Notice that
the number of triangles does not need to be conserved. Over the regions where the Hessian is
small the elements are large, while over the regions where the Hessian is large the triangles are
several orders of magnitude smaller. In the numerical discretization, the functions are linearly
interpolated within each triangle and their second derivatives are not defined there. Thus the
Hessian at vertex k, Hk

αβ , is estimated using the following ‘weak’ definition (see [4], p 349):

Hk
αβ = −

∫
(∂�/∂xα)(∂vk/∂xβ) dS∫

vk dS
, (9)

where � is the function that we want to determine. vk is the piecewise linear hat function
associated with vertex k (vk = 1 at vertex k, vk = 0 at all other vertices and vk(x, y) is
linearly interpolated within each triangle), x1 = x and x2 = y. To construct a new anisotropic
non-uniform mesh we associate a metric to each vertex of the old mesh, i.e. a two-dimensional
matrix that defines the new triangle size near that vertex. The size of the new triangle is
chosen to guarantee that the difference between the interpolated function �(x, y) and the
exact solution is equally distributed over the new mesh.

The required map, Mk
αβ , at vertex k, is a two-dimensional positive-definite matrix that

may be defined as the absolute value of the Hessian Hk :

Mk = c0O
( |λ1| 0

0 |λ2|
)
O−1, (10)
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whereO is the orthogonal matrix that diagonalizes the Hessian,and λ1 and λ2 the corresponding
eigenvalues. The constant c0 controls the number of mesh triangles. To avoid problems due
to the divergence of the Hessian, the eigenvalues are bounded by

λα = min

(
max

(
|λα|, 1

c0h2
max

)
,

1

c0h2
min

)
, (11)

where hmax and hmin are the minimal and maximal mesh edge lengths. We used the 2D mesh
generator [4] (BL2D package). The construction of the new adapted mesh, given the old one
and the metric map, is automatically generated by a BL2D subroutine. Starting from a mesh
with 656 points and ending with 21 888 points, we obtain results with an accuracy of 10−4;
the calculation takes about 80 min on a Digital Alpha station at 600 MHz.

4. Dipolar interaction in 2D nematics

A stringent test of the numerics is provided by considering two circular discs of radius a
separated by a distance R along the x-axis, in the one elastic constant approximation, and
comparing the numerical results with the analytical results of [10]. Since equation (1) is
singular at the defects we pinned a − 1 defect near each disc at a distance rd1 measured from
the centre the disc. The system exhibits mirror symmetry with respect to the x-axis.

The tilt angle θ is fixed at the physical boundaries. The far-field director n0 is taken parallel
to the x-axis (θ = 0) and homeotropic boundary conditions were imposed at the surfaces of
the colloidal discs. On the x-axis, θ is set to zero everywhere except between the discs and at
their companion defects. The core energies contribute with a constant and were not taken into
account.

As a first test of the numerics, one single disc was considered. The free energy as a
function of the defect distance rd was calculated, for a dipole parallel to the far-field director.
The equilibrium free energy was found for a defect at rd = (1.41 ± 0.01)a, in agreement with
the analytical [10] and experimental [1] results.

We used a rectangular integration region of size Lx × L y = 50a × 20a which was
sufficiently large to make finite-size effects negligible. With this technique we are able to
study defects with cores as small as 10−3a.

Near the core the elastic distortion is determined by the defect alone. We found that the
separation of the discs had no influence on the position of the outer defect. The latter is then
pinned at rd2 = 1.41a. In this study the lowest elastic free energy was obtained at a disc
separation R = 2.82a, with an inner defect at rd1 = 1.41a.

When considering the equilibrium position of the inner defect rd1 , as a function of the
disc separation R, one finds three different regimes [9]. At small disc separation (R � 2.82a)
the defect is at the mid-point between the discs, rd1 = R/2. In an intermediate regime
(2.82a � R � 6.5a) the defect position varies non-monotonically with R. Finally, at large
disc separations the position of the inner defect is independent of R and is given by that of an
isolated disc.

The Frank free energy exhibits a pronounced minimum at R = (2.82±0.01)a (figure 1(a)),
comparable to the experimentally obtained value of (2.6 ± 0.2)a by Cluzeau et al [1]. The
signature of the dipolar interaction at large disc separations may be seen in figure 1(b). The
interaction free energy decays as a power law, R−2.

5. Dipolar versus quadrupolar configurations

Recently Pettey et al [10] used the Frank elastic energy (equation (3)), to obtain analytical
expressions for the free energy of a disc of radius a, with a dipolar topological defect (see
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Figure 1. (a) The 2D Frank free energy as a function of the disc separation. The free energy has
a pronounced minimum at R = (2.82 ± 0.01)a. (b) Log–log plot of the interaction free energy
versus disc separation. F0 is the free energy at infinite separation. Circles represent the numerical
results. The line is proportional to R−2.

(b)(a)

Figure 2. (a) Dipolar configuration. A colloidal particle with radius a is accompanied by a defect
with topological charge q = −1 located at rd = √

2a from the centre of the particle; (b) quadrupolar
configuration. Two defects with topological charge q = −1/2 are located at rd = 4

√
7/3a from

the centre of the particle.

figure 2(a). The equilibrium defect position was found at (rd)eq = √
2a. In a 2D nematic,

however, configurations n and −n are equivalent allowing a quadrupolar defect configuration,
where the disc is accompanied by two −1/2 topological defects (figure 2(b)) yielding [15]

Fquadrupolar = −π K

2
log 2

(
a3

r3
d

− a7

r7
d

)
+

π K

2
log

a

ξq
+ Fcore, (12)

where ξq = |q|ζ is the core radius, q is the charge of the defect and ζ the nematic correlation
length. Fcore is given by equation (7).

Minimizing (12) with respect to rd yields (rd)eq = 4
√

7/3a, as obtained by Fukuda and
Yokoyama [6] using a simple force balance argument.

The difference between the free energy of the dipolar configuration and (12) is a function
of the correlation length ζ and the disc’s radius [15]:

Fdip − Fquad ≈ π K

2

(
2.08 + log

a

ζ

)
. (13)

Since far from the nematic–isotropic transition a � ζ , this difference is always positive, and
thus the quadrupolar configuration is the most stable within this description.
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6. Quadrupolar interaction in 2D nematics

The interaction of two colloidal discs, each with two −1/2 topological defects, was considered
in [15]. The far field n0 is along the y-axis. The origin of the reference frame is at the centre
of one of the particles; the centre of the second particle is at R = (R cos α, R sin α). If the
separation between particles is large, the nematic distortion is approximately given by the
sum of the isolated quadrupolar solutions, θ ≈ θ1 + θ2. Assuming homeotropic boundary
conditions this yields for the long-range interaction energy

Fint ≈ 6π K (r4
d + a4)

1 − 2 sin2 2α

R4
. (14)

The effective interaction between discs decays as R−4 and is strongly anisotropic: repulsive if
the particles are aligned horizontally or vertically (α = 0 or π/2, respectively), and attractive
at intermediate oblique orientations.

At small disc separations, the nematic deformation is no longer the sum of isolated
quadrupolar solutions. In order to study this we have used the numerical scheme described
previously. We considered discs, of radius a, in a box of side 20a. Although analytically
simpler, the Frank free energy (1) is plagued with divergences of ∇θ at the defects and is not
the most adequate for numerical computations, and thus we resorted to the LdG free energy (6).

To test the numerical accuracy of the procedure we calculated the nematic configuration
for the isolated disc, and found two half-integer defects at rd = (1.23 ± 0.01)a, in very good
agreement with the analytical result.

The effective interaction between discs is plotted in figure 3(a) as a function of the distance
R between discs, at different orientations (α = 0, π/4, π/2). The long-range decay R−4 is
confirmed at large disc separations. However, at smaller separations, the free energy changes
dramatically. Orientations that are repulsive at large separations (e.g., α = 0, π/2) become
attractive at different threshold distances (Rth ≈ 5a and Rth ≈ 3a, respectively). This change
in behaviour is accompanied by the displacement of the defects around the discs (see figure 4).
In addition, at short distances, the free energy corresponding to the parallel orientation (α = 0)
decreases below that of the large distance preferred oblique orientation (α = π/4). At large R
the discs prefer an oblique orientation (with α = π/4), that changes to parallel (with α = 0)
as their separation decreases [15].

The interaction between discs at small separations was also analysed. For strong
homeotropic anchoring, and for all orientations α, we observed a repulsion when the discs
are nearly at contact, at R ≈ 2.1a. We relaxed the strong anchoring condition and calculated
the total elastic free energy as a function of the distance R between discs, for three reduced
anchoring strengths (aW/K = 250, 10, 7.5). The results are plotted in figure 3. These
anchorings are strong enough to induce defects in the nematic. A repulsion is obtained at
small separations for strong anchoring (aW/K = 250) but vanishes at a critical anchoring
strength that lies between 7.5 < aW/K < 10. We predict that below this anchoring strength
coalescence of droplets may occur.

7. Key-lock

The interaction of a topological defect with a planar wall was considered by Imura and
Okano [7] using the method of images. The same method has been used to study the interaction
of a colloidal disc with a planar wall, with homeotropic boundary conditions. This is equivalent
to the interaction of two colloidal discs in a nematic with a fixed orientation, at the midplane
(line) between the colloids. At long distances, one finds that the interaction is given by
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Figure 3. (a) Reduced elastic free energy F̄ = F/K as a function of the distance R between
discs, at different orientations (α = 0, π/4, π/2). Bottom: reduced elastic free energy F̄ = F/K
as a function of the discs separation R, for three anchoring strengths, aW/K = 250, 10, 7.5,
corresponding to the circles, diamonds and triangles, respectively. (b) Parallel alignment (α = 0);
(c) perpendicular alignment (α = π/2). Fu = F[S = Sbulk] is the LdG free energy of a uniform
equilibrium nematic.

Figure 4. Nematic configurations at several separations for horizontal alignment α = 0. The
nematic order parameter varies between S = 0 (grey regions) and S = Sbulk (white).

equation (14) with R = 2R′ and α = π/2. R′ is the distance from the centre of the disc to the
planar wall. At short distances there is a repulsion (see figure 5).

By adding a cavity to the wall this repulsion may be turned into an attraction [13]. We
find that the attraction is stronger for cavities with shapes that are related to that of the disc
(see figure 6) and that the minimum free energy occurs when the disc is deep inside the cavity.
The colloidal disc plays a role similar to a key with the cavity being the lock.
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Figure 5. Reduced elastic free energy F̄ = F/K as a function of the distance R′ of the centre
of the disc from the planar wall. As the disc approaches the wall the defects move towards it,
increasing the colloid–wall repulsion. F0 is the LdG free energy for the system without colloid.
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Figure 6. Reduced elastic free energy F̄ = F/K as a function of the distance R′ of the
centre of the disc from the cavity entrance, for d/a = 0.01 and different cavity widths (r/a =
0.25, 0.50, 0.75, 1.00, 1.50). As r/a approaches unity the interaction energy exhibits a minimum
near the cavity.

8. Nematic–isotropic interface

Recently, a drag on colloidal particles by a moving NI interface has been reported [18].
Depending on the cooling rate, West et al observed different structures: (a) cellular, with
particle-free nematic domains separated by particle-rich regions; (b) striped, with particle-rich
regions arranged in stripes; (c) root-like structures.

In order to describe the interaction of a colloid with an NI interface, it is convenient to
consider the 3D tensor order parameter formalism, where the cubic term of the bulk energy (5)



Colloidal discs in nematic liquid crystals S1929

Figure 7. Order parameter and director field for strong homeotropic anchoring at the colloid. The
distance of the colloid from the nematic–isotropic interface is (a) R/2a = −2; (b) R/2a = −1;
(c) R/2a = 1.75; (d) R/2a = 2. The dark region corresponds to S(r) = 0 and the white region to
S(r) = Sbulk.

is non-zero, allowing us to treat the first-order NI transition properly. In 3D the interfacial
nematic orientation depends on the sign of L2 [3].

For simplicity, we consider a system with cylindrical symmetry, characterized by
inhomogeneities in 2D only, and thus assume that the colloid is a (long) cylindrical particle
of radius a, in a 3D nematic [16]. We apply a temperature gradient along the x-axis (by
assuming that A(x) varies linearly with x , changing sign at x = 0) and set the director at
the cold wall (T < TNI) parallel or perpendicular to it, while at the hot wall (T > TNI)
the order parameter is set to zero. As a result, a planar nematic–isotropic interface obtains
parallel to the yz-plane. The long axis of the cylinder is parallel to the z-axis and the system
is translationally invariant in the z-direction. We apply periodic boundary conditions in the
y-direction. We assume strong homeotropic anchoring conditions at the particle’s surface. In
line with the symmetry of the problem we restrict the variations of n to the xy-plane. We
note that in 3D, the presence of spatial non-uniformities may break the continuous rotational
symmetry around n leading to biaxiality. This is described by the full tensor order parameter
Qαβ = S(r)(nαnβ − δαβ/3) + B(r)(lαlβ − mαmβ). The unit vectors n, l, and m form a local
orthonormal triad. If the director is constrained to the xy-plane, m can be chosen along the
z-axis and l in the xy-plane.

In figure 7 we plot the order parameter and the director field for different positions R of
the colloidal particle. As the colloid moves towards the interface, the nematic configurations
change in a series of discontinuous transitions, where one or two of the defects are annihilated.
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Figure 8. Free energy as a function of the position of the colloidal particle with respect to the
nematic–isotropic interface. Strong homeotropic anchoring is imposed at the particle surface.
L1 = 0.001 and L2 = 0.002; the temperature gradient is ∂x T = 0.025.

The NI interface bends towards the colloid in order to minimize the elastic free energy. Figure 8
shows the free energy as a function of the position of the colloidal particle. The interaction has
a well defined minimum at R = 0. In this region the tensor order parameter and the interfacial
structures are complex and cannot be described analytically.

9. Conclusions

The numerical method based on adaptive finite-size elements, described above, has proven
both accurate and versatile; thus it is a useful tool to solve a wide range of colloidal problems
in anisotropic host fluids, including colloids in non-uniform nematics.
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